
© TraceLink Inc. 2009 - 2025 All Rights Reserved

T R A C E L I N K U N I V E R S I T Y

Home
Resources
TraceLink University

Custom Transforms
Development Guide

Overview

This guide covers the steps necessary to create a custom transform:

Familiarize yourself with relevant terminology1.
Plan your transform by mapping schema fields2.
Validate your planned field mappings3.
Select which method of transform creation to use4.
Create your transform5.
Upload and use your transform6.

Transform Terminology

Term Definition

Canonical TraceLink's system agnostic data format. The canonical
data model allows information to be exchanged with any
partner on the network, regardless of their data format.

Standard Transform Data mapping of standard EDI formats with TraceLink
canonicals

Custom Transform Data mapping of external systems with TraceLink
canonicals

Transaction Type B2B messages relating to a business process (e.g.
purchase orders, invoices, etc.)
All supported transaction types can be found here.

https://www.tracelink.com/
https://www.tracelink.com/resources/resource-center
https://www.tracelink.com/resources/tracelink-university
https://opus.tracelink.com/documentation/prod/en-US/mpc/Content/top_nav/set_up_apis.htm

© TraceLink Inc. 2009 - 2025 All Rights Reserved

Inbound Transform Data is transformed from an external system to TraceLink

Outbound Transform Data is transformed from TraceLink to an external system

Plan Your Transform

At a high level, a transform defines data mappings between two schemas. The goal
of this step is to manually plan how fields from an external system schema map to
fields of a transaction’s TraceLink canonical schema.

The table below reviews the materials needed to plan your transform:

Requirement Description Link

External system schema
file

A file providing the schema from the external system.
This file should provide the structure of fields in the
external system for the designated transaction type.

N/A

External system base file This file should allow you to review example data for
every field in the schema.

N/A

TraceLink’s canonical
schema file

Provided by TraceLink, this is a JSON file providing the
schema of a TraceLink canonical. Each transaction type
has its own canonical. This field should allow you to
understand each field in the TraceLink canonical.

Link

TraceLink’s canonical
reference documentation

Provided by TraceLink, this documentation provides
usage details on each field in TraceLink’s canonical
schema. For example, which fields are required.

Link

Leveraging the external system’s schema and TraceLink’s canonical reference
documentation for reference, map fields between each in the schema files.

We recommend creating a spreadsheet file, similar to the table below, to do this.

https://github.com/tracelink/code-samples/tree/main/canonicals
https://github.com/tracelink/code-samples/canonicals

© TraceLink Inc. 2009 - 2025 All Rights Reserved

Creating a field mapping spreadsheet upfront makes the transform creation step
easier.

External System Field TraceLink Canonical Field
addr1 address1
createdDate transactionDate
companyName supplierName
amount pricingAmount

Please note that you may need to create multiple transforms. Each transform
supports one transaction type and one direction. For example, if you need to
transform data for purchase orders inbound and outbound, you will create two
separate transforms.

Once you have completed your mapping plan you can proceed to validation.

Validate the Transform Mapping

This step provides you with test cases to manually validate against your map plan.

Evaluate that every required field has a value
Evaluate that required fields will error correctly if there is no provided value
Evaluate that non-required fields will not error if no value is provided
Evaluate that if an invalid value is given it will error
Evaluate that field having a required number of characters are the correct
length (e.g. serial numbers)

Methods of Custom Transform Creation
There are two methods currently available for building transforms: OpenText
Contivo and JavaScript. The table below provides an overview of each option.
 OpenText Contivo

Transforms
JavaScript Transforms

Output .jar file .js file

© TraceLink Inc. 2009 - 2025 All Rights Reserved

Benefits • Centralized visual tool
• Low code

• Highly customizable
• Open source code

Prerequisites • OpenText Contivo version 21
license
• Training
• EDI expertise

• Most recent version of
JavaScript ES6
• Development experience

Transform Extensions

Chained Transforms

Chained transforms are useful when you need to perform multiple, distinct data
transformations in a specific sequence, ensuring that each step builds on the
output of the previous one. This allows you to streamline complex processes that
involve various data formats or transformations.

Chained transforms use a list of child transforms and are executed in a defined
order. The initial input file is input into the first child and its output is used as the
input for the next child and so on until the end of the chain is reached.

For example:

Transform A converts CSV to XML
Transform B converts XML to JSON
Transform C converts JSON to EDI
Transform D chains A, B, and C together to convert CSV to EDI

When creating chained transforms, you have the flexibility to combine those built
with OpenText Contivo and JavaScript, as well as mix custom and standard
transforms. However, chained transforms cannot be chained together.

© TraceLink Inc. 2009 - 2025 All Rights Reserved

If you are creating a chained transform, please create each transform in the chain
and then proceed with the upload and use step, where the execution order is
defined. For the example above you would send us details such as:

Please execute these transforms in the order below

Transform A
Transform B
Transform C
Transform D

At this point you should have your validated mapping specification file and know
which method you will use to create your transform.

Create a Transform
In this step you will create the transform itself using your chosen method of
creation. At the end of this step your transform will be a .jar or .js file.

Creating Transforms with OpenText Contivo

The table below reviews the required materials for creating a transform using
OpenText Contivo:
Requirement Description Link

External system schema
file

A JSON file providing the schema from the external
system. This file should provide the structure of fields
in the external system for the designated transaction
type.

N/A

External system base file This file should allow you to review example output for
every field in the schema.

N/A

TraceLink’s canonical
schema file

Provided by TraceLink, this is a JSON file providing the
schema of a TraceLink canonical. Each transaction type
has its own canonical. This file should allow you to
understand each field in the TraceLink canonical.

Link

TraceLink’s canonical
reference
documentation

Provided by TraceLink, this documentation provides
usage details on each field in TraceLink’s canonical
schema. For example, which fields are required.

Link

https://github.com/tracelink/code-samples/tree/main/canonicals
https://www.tracelink.com/resources/tracelink-university/canonical-reference

© TraceLink Inc. 2009 - 2025 All Rights Reserved

Import the external system schema file and TraceLink’s canonical schema file to
create your mappings in OpenText Contivo, using your mapping specification file
for reference.

When complete, compile into a .jar file. This is what you will need to provide
TraceLink in the upload and use step.

Creating Transforms with JavaScript

This step walks you through how to create a transform using Javascript, with the
output being a .js file.

The code sample below shows the overall structure of a transform created with
JavaScript.

let response = {};
 try {
 // get input file contents
 // transform content
 // put output file
 response.result = "SUCCESS";
 } catch (e) {
 context.log().error(`Transform Javascript Activity: Error
encountered while executing Javascript transform: ${e}`);
 response.result = "FAILURE";
 response.resultErrorText = e.message;
 }
 return response;

The following attributes are available for use:

context.log allows you to log messages

context.log().info('Transform Javascript Activity: Executing
Javascript transform');

context.s3.getInputFileString returns a promise<string> to get the contents of
the input file to be transformed

const inputFileString = await context.s3.getInputFileString();

© TraceLink Inc. 2009 - 2025 All Rights Reserved

context.s3.uploadOputFileString(data); returns a promise<S3PutOpjectResponse>
to upload the transformed data to an object in S3

const uploadFileResponse = await
context.s3.uploadOutputFileString(data);

context.sendEvent(event, appName, data) sends event handler requests and returns
a Promise<object> for the event’s response. This can be used with any endpoints
in our API reference documentation. For example, if your external system can
provide a product’s ID, but not the name, you can make a call to product master
data to retrieve and insert it.

const data = {
 transformName: 'TL_JSONtoCSV_1_0_OB',
 transformVersion: 1
 };
 const eventResponse = await context.sendEvent('masterdata-
manager:get-product-by-itemcode:v1', 'masterdata-manager', data);

All JavaScript transforms should return a response object that is used to
communicate success or failure of the transform execution. The response object
should contain a result string attribute with either success or failure. If the result
is FAILURE, the response should also have a resultErrorText string attribute to
provide details about the cause.

let response = {};
 try {
 // get input file contents
 // transform content
 // put output file
 response.result = "SUCCESS";
 } catch (e) {
 context.log().error(`Transform Javascript Activity: Error
encountered while executing Javascript transform: ${e}`);
 response.result = "FAILURE";
 response.resultErrorText = e.message;
 }
 return response;

Sample JavaScript Transform

//Log the start of the transform activity

© TraceLink Inc. 2009 - 2025 All Rights Reserved

 context.log().info('Transform Javascript Activity: Executing
Javascript transform');
 //Function to convert JSON object to XML format
 function JSONtoXML(obj) {
 let xml = '';
 for (let prop in obj) {
 xml += obj[prop] instanceof Array ? '' : '<' + prop + '>';
 if (obj[prop] instanceof Array) {
 for (let array in obj[prop]) {
 xml += '\n<' + prop + '>\n';
 xml += JSONtoXML(new Object(obj[prop][array]));
 xml += '</' + prop + '>';
 }
 } else if (typeof obj[prop] == 'object') {
 xml += JSONtoXML(new Object(obj[prop]));
 } else {
 xml += obj[prop];
 }
 xml += obj[prop] instanceof Array ? '' : '</' + prop + '>\n';
 }
 xml = xml.replace(/<\/?[0-9]{1,}>/g, '');
 return xml;
 }
 let response = {};
 try {
 //Get the input file as a string
 const inputFileString = await context.s3.getInputFileString();
 //Parse the input file string into a JSON object
 const inputFileObject = JSON.parse(inputFileString);
 //Convert the inputFileObject to XML
 const xml = JSONtoXML(inputFileObject);
 //Upload the resulting XML string as the output file
 const uploadFileResponse = await
context.s3.uploadOutputFileString(xml);
 //Log the response from the upload output file indicating a
SUCCESS or a FAILURE with an error message
 context.log().info(`Transform Javascript Activity: Response
returned from upload output file api is:
${JSON.stringify(uploadFileResponse)}`);
 response.result = "SUCCESS";
 } catch (e) {
 context.log().error(`Transform Javascript Activity: Error
encountered while executing Javascript transform: ${e}`);
 response.result = "FAILURE";
 response.resultErrorText = e.message;
 }

© TraceLink Inc. 2009 - 2025 All Rights Reserved

 return response;

Your transform should now be a .js file, ready for upload to TraceLink.

Upload and Use a Transform

Now that you have a .jar or .js containing your transform and are ready to upload it
for use, please send an email with the information below below to partner-
operations [at] tracelink.com (partner-operations[at]tracelink[dot]com).

Information Required? Details

Environment Required Specify which environment you would like your
transform uploaded to: validation and/or production.
Our best practice recommendation is to use your
transform in validation before production. You may
request deployment to both validation and production
to avoid submitting another request, requiring
additional turnaround time, for us to enable an
additional environment.

Chained
Transform
Sequence

Use Case
Dependent

If you are creating a chained transform, indicate the
necessary sequence of execution.

You should receive an immediate, automated response if we successfully receive
your request. A member of our team will follow up with you validating the required
details and requesting your transform file.

Once we receive the file and upload it to our system, we will confirm when your
transform is ready for use. At that time, we recommend testing your transform in
your validation environment before proceeding to production. Please let us know if
you encounter any issues that require our assistance.

Change Management

Your custom transform cannot automatically account for any new or modified
fields. Therefore, you will need to go through the steps above to generate a new .js
or .jar file containing the changes. The uploaded changes will overwrite previous
files unless otherwise specified. If you have any questions about this process

© TraceLink Inc. 2009 - 2025 All Rights Reserved

please email partner-operations [at] tracelink.com (partner-
operations[at]tracelink[dot]com).

Related Content

Canonical Reference

Canonical objects for transform development
View More

https://www.tracelink.com/resources/tracelink-university/canonical-reference
https://www.tracelink.com/resources/tracelink-university/canonical-reference

© TraceLink Inc. 2009 - 2025 All Rights Reserved

Use Case: Custom Transforms

Data mapping with TraceLink
View More

https://www.tracelink.com/resources/tracelink-university/use-case-custom-transforms
https://www.tracelink.com/resources/tracelink-university/use-case-custom-transforms

